

TOWN OF MEDWAY DEPARTMENT OF PUBLIC SERVICES INTEGRATED WATER RESOURCES MANAGEMENT PLAN MEDWAY, MASSACHUSETTS KLEINFELDER PROJECT #20110090.003A

DECEMBER 2018 Updated FEBRUARY 2019

DRAFT

Copyright 2018 Kleinfelder All Rights Reserved

ONLY THE CLIENT OR ITS DESIGNATED REPRESENTATIVES MAY USE THIS DOCUMENT AND ONLY FOR THE SPECIFIC PROJECT FOR WHICH THIS REPORT WAS PREPARED.

A Report Prepared for:

Mr. David D'Amico Director Department of Public Services 155 Village Street Medway MA 02053

TOWN OF MEDWAY DEPARTMENT OF PUBLIC SERVICES DRAFT INTEGRATED WATER RESOURCES MANAGEMENT PLAN MEDWAY, MASSACHUSETTS

Prepared by:

Laura A. Nolan, PE Project Manager

Reviewed by:

Kirsten Ryan, PG Principal Professional

KLEINFELDER

One Beacon Street, Suite 8100 Boston, MA 02108 Phone: 617.497.7800 Fax: 617.498.4630

Kleinfelder Project No 20110900.003A

TABLE OF CONTENTS

EXEC	UTIVE	SUMMARY	XI
1.	INTRO	DDUCTION	.1
1.1	Orga	NIZATION OF THE REPORT	.2
1.2	Prog	RAM BACKGROUND AND DEVELOPMENT	.3
1.	2.1	Regulatory Considerations	.4
1.	2.2	Past Reports and Studies	.5
1.3	Prog	RAM GOALS AND IMPLEMENTATION STRATEGIES	.6
2.	PUBL	IC PARTICIPATION	.8
2.1	PUBLI	C PARTICIPATION PLAN AND EFFORTS	.8
2.2	Сомм	UNICATION PLAN	.8
2.3	STAKE	HOLDER AND PARTNER OUTREACH1	0
2.4	PUBLI	C PARTICIPATION1	1
2.5	PUBLI	C INPUT AND CONCLUSIONS1	2
3.	BUIL	AND NATURAL ENVIRONMENT1	3
3.1	BUILT	ENVIRONMENT1	3
З.	1.1	Land Use and Zoning	13
З.	1.2	Buildout Analysis	17
З.	1.3	Population	18
	3.1.3.1	Population Growth Projections1	8
3.2	NATUF	RAL ENVIRONMENT	20
3.	2.1	Climate	20
3.	2.2	Geology and Hydrogeology2	20
3	2.3	Soils	21
3.	2.4	Topography and Depth to Groundwater2	23
3.	2.5	Water Resources	23
	3.2.5.1	Flood Plains	23
	3.2.5.2	2 Wetlands	25
	3.2.5.3	Water Supply Protection2	25

	3.2.5.4	Dams	.27
	3.2.5.5	Surface Water Quality and Impairments	.27
3	3.2.6	Wildlife Habitat and Endangered Species	.29
3	3.2.7	Hazardous Waste Sites	.32
4.	EXIST	TING WASTEWATER SYSTEM	.33
4.1	WAST	EWATER COLLECTION SYSTEM	.33
4	1.1.1	Past Studies	.35
4.3	SYSTE	M PERFORMANCE	.37
4	1.3.1	Existing Flows	.37
4	1.3.2	Hydraulic Capacity	.39
4	1.3.3	Infiltration and Inflow (I/I)	.40
4.4	WAST	EWATER SYSTEM OPERATIONS AND MAINTENANCE	.43
4	1.4.1	Wastewater Collection System Improvements	.43
4	1.4.2	Rules and Regulations	.44
4	4.4.3	Rates	.44
4.5	ON-SI	TE WASTEWATER MANAGEMENT SYSTEMS	.44
4	4.5.1	Site Suitability	.45
4	4.5.2	Regulatory	.45
4	4.5.3	Operations and Maintenance	.46
5.	EXIST	TING DOMESTIC WATER SYSTEM	.47
5.1	PUBLI	C WATER SUPPLY	.47
5	5.1.1	Water Withdrawal Limits	.49
5	5.1.2	Water Supply Treatment and Limitations	.50
5	5.1.3	Private Water Supply	.51
5	5.1.4	Intermunicipal Water System Connections	.52
5.2	WATE	R DISTRIBUTION SYSTEM	.52
5	5.2.1	Water Distribution Storage	.53
5	5.2.2	Past Studies	.53
5.3	WATE	R CONSUMPTION	.54
5	5.3.1	Residential	.56
5	5.3.2	Commercial/Business	.57

5.	3.3	Residential Institutional	57			
5.	3.4	Agricultural/Industrial	58			
5.	3.5	Municipal	58			
5.	3.6	Unaccounted-for Water	59			
5.	3.7	Average Daily Demand	61			
5.	3.8	Maximum Daily Demand	61			
5.	3.9	Peak Hour Demand	62			
5.4	WATER	R SYSTEM OPERATIONS AND MAINTENANCE	63			
5.	4.1	Bylaws	64			
5.	4.2	Water Conservation	64			
5.	4.3	Water Rates	65			
6.	EXIST	ING STORMWATER SYSTEM	66			
6.1	SURFA	CE WATERS	66			
6.2	MUNIC	IPAL STORMWATER INFRASTRUCTURE	67			
6.3	System Performance					
6.4	Regul	ATORY	70			
6.	4.1	NPDES MS4 Permit	70			
6.	4.2	Bylaws	72			
6.5	OPERA	TIONS AND MAINTENANCE	73			
6.6	Fundir	NG	74			
7.		S ASSESSMENT	75			
7.1	WASTE	EWATER SYSTEM NEEDS ASSESSMENT	75			
7.	1.1	Sewered Area Needs	75			
	7.1.1.1	Flow Metering	75			
	7.1.1.2	Projected Flows	76			
	7.1.1.3	CRPCD Capacity	76			
	7.1.1.4	Infiltration and Inflow	79			
	7.1.1.5	Sewer Operations	79			
7.	1.2	Unsewered Area Needs	79			
	7.1.2.1	Record Keeping	80			

7.1.2	Public Education	80
7.1.2	2.3 Targeted Sewer Extensions	82
7.1.3	Summary of Wastewater Needs	82
7.2 DOM	IESTIC WATER SYSTEM NEEDS	83
7.2.1	Existing Limits on Water Supply	83
7.2.2	Supply Needs for Current and Future Demands	84
7.2.2	2.1 Redundancy	90
7.2.2	2.2 Resiliency	90
7.2.2	2.3 Increasing System Production Capacity	91
7.2.2	2.4 Managing Demand from Future Development	91
7.2.3	Increasing WMA Authorized Withdrawal Volume	92
7.2.4	Reducing UAW and Promoting Conservation	
7.2.5	Improving Documentation Procedures	
7.2.6	Improvements to Distribution System Infrastructure	95
7.2.7	Reclaimed Water Reuse Potential	95
7.2.8	Summary of Domestic Water Needs	96
7.3 S то	RMWATER SYSTEM NEEDS ASSESSMENT	
7.3.1	Water Quality Needs	
7.3.2	MS4 Program Permit Compliance Needs	
7.3.2	2.1 Stormwater System Mapping	101
7.3.3	Drainage (Hydraulic) Improvement Needs	
7.3.4	Summary of Stormwater Needs	
8. IDE	NTIFICATION AND SCREENING OF ALTERNATIVES	106
8.1 Sys	TEM INTERCONNECTIONS	106
8.2 ALT	ERNATIVES	108
8.3 INTE	GRATED MODELING OF ALTERNATIVES	110
8.3.1	Overview of STELLA and its Application in Medway	
8.3.2	Inputs	
8.3.3	Validation	
8.3.4	Evaluating Individual Alternatives	116
	LUATING SCENARIOS	118
Town of Med Draft Integra	lway ted Water Resources Management Plan	Page vi of xx

8.5	RESUL	TS	120
9.	INTEC	GRATED WATER RESOURCES MANAGEMENT PLAN	122
9.1	OVER	/IEW	122
9.2	INTEG	RATED PLAN	122
9.2	2.1	Overall Recommendations	
9.2	2.2	Wastewater System Recommendations	
9.2	2.3	Drinking Water System Recommendations	
9.2	2.4	Stormwater System Recommendations	
9.3	Asses	SMENT OF IWRMP IMPACTS AND BENEFITS	131
9.3	3.1	Environmental Impacts and MEPA Thresholds	131
9.3	3.2	Benefits of the Integrated Plan	136
9.4	IMPLE	MENTATION PLAN	137
9.5	FINAN	CIAL CONSTRAINTS	141
REFE	RENCE	S	142
		BLES DMMUNICATION PLAN	0
		IMMONICATION PLAN	
		SESSOR'S OFFICE LAND USE CLASSIFICATION	
		EDWAY'S ZONING DISTRICTS	
		STORIC POPULATION (SOURCE: US CENSUS)	
		IDI POPULATION PROJECTIONS	
		DILS IN MEDWAY	
		PAIRED WATERS, TOWN OF MEDWAY MA	
		EDWAY RARE AND ENDANGERED SPECIES	
		ASTEWATER COLLECTION SYSTEM GRAVITY SEWER INFORMATION	
		EDWAY SEWER EXTENSIONS	
TABLE	4-3: CF	RPCD Wastewater Flow vs Capacity	
TABLE	4-4: SA	NITARY SEWER OVERFLOW HISTORY	40
TABLE	4-5: Me	EDWAY'S FY18 SEWER RATES	44
TABLE	4-6: Sc	DIL SURVEY CLASSIFICATION	45
TABLE	5-1: GF	ROUNDWATER WELLS SUMMARY	47
TABLE	5-2: Sc	DURCE SAFE YIELD AND AVAILABLE WATER SUPPLY	50

TABLE 5-3: DRINKING WATER TREATMENT PROCESSES IN MEDWAY, MA	50
TABLE 5-4: DISTRIBUTION SYSTEM PIPE SIZES	52
TABLE 5-5: MEDWAY HISTORIC WATER USAGE, ANNUAL	54
TABLE 5-6: WATER USAGE BY CONSUMER TYPE, 2016 ASR	55
TABLE 5-7: MEDWAY HISTORIC RESIDENTIAL WATER USAGE	56
TABLE 5-8: MEDWAY HISTORIC COMMERCIAL WATER USAGE	57
TABLE 5-9: MEDWAY HISTORIC RESIDENTIAL INSTITUTIONAL WATER USAGE	57
TABLE 5-10: MEDWAY HISTORIC AGRICULTURAL/INDUSTRIAL WATER USAGE	58
TABLE 5-11: MEDWAY HISTORIC MUNICIPAL WATER USAGE	58
TABLE 5-12: MEDWAY HISTORIC UNACCOUNTED FOR WATER	59
TABLE 5-13: MEDWAY'S FY18 WATER RATES	65
TABLE 6-1. CATEGORIZATION OF STORMWATER OUTFALLS	68
TABLE 6-2: AVAILABLE FUNDING FOR STORMWATER ACTIVITIES	74
TABLE 7-1: WASTEWATER PROJECTIONS	76
TABLE 7-2: WASTEWATER NEEDS	82
TABLE 7-3: MEDWAY HISTORIC WATER DEMANDS	84
TABLE 7-4: DEMAND PROJECTION SCENARIOS	85
TABLE 7-5: DRINKING WATER NEEDS	97
TABLE 7-6: MINIMUM CONTROL MEASURE NEEDS	100
TABLE 7-7: 2016 MS4 PERMIT MAPPING REQUIREMENTS	101
TABLE 7-8: STORMWATER DRAINAGE ISSUES	104
TABLE 7-9: STORMWATER NEEDS	104
TABLE 8-1: IMPACTS OF ALTERNATIVES THROUGHOUT MEDWAY'S WATER SYSTEMS	110
TABLE 9-1: SUMMARY OF POTENTIAL ENVIRONMENTAL AND PUBLIC HEALTH OR SAFETY	IMPACT AND
BENEFITS	133
TABLE 9-2: IWRMP CURRENT SPENDING IMPLEMENTATION PLAN YEARS 11-20 (2018 DC	LLARS) 139
TABLE 9-3: IWRMP CURRENT SPENDING IMPLEMENTATION PLAN YEARS 11-20 (2018 DC	LLARS) 139
TABLE 9-4: IWRMP IMPLEMENTATION PLAN YEARS 0-10 (2018 DOLLARS)	140
TABLE 9-5: IWRMP IMPLEMENTATION PLAN YEARS 11-20 (2018 DOLLARS)	140

LIST OF FIGURES

FIGURE 3-1: TOWN OF MEDWAY ZONING MAP, 2017	16
FIGURE 3-2: MEDWAY'S POPULATION DATA AND PROJECTIONS (2000 – 2035)	20

Town of Medway Draft Integrated Water Resources Management Plan

FIGURE 3-3: SURFICIAL GEOLOGY AND AQUIFERS	22
FIGURE 3-4: USGS QUADRANGLE MAP	24
FIGURE 3-5: WATER RESOURCES AND WETLANDS	26
FIGURE 4-1: WASTEWATER COLLECTION SYSTEM IN MEDWAY, MA	34
FIGURE 4-2: METERED AND UNMETERED WASTEWATER FLOW	38
FIGURE 4-3: WASTEWATER FLOWS VS. CRPCD CAPACITY	39
FIGURE 4-4: SEWER SUBAREAS	42
FIGURE 5-1: TOWN OF MEDWAY DRINKING WATER SUPPLY/DISTRIBUTION SYSTEM	48
FIGURE 5-2: UNACCOUNTED FOR WATER 2012-2016	60
FIGURE 5-3: AVERAGE DAILY DEMAND 2012-2016	61
FIGURE 5-4: MAXIMUM DAILY DEMAND 2012-2016	62
FIGURE 5-5: ESTIMATED PEAK HOUR DEMAND 2012-2016	63
FIGURE 6-1: STORMWATER OUTFALLS	69
FIGURE 7-1: WASTEWATER PROJECTIONS VS. CRPCD CAPACITY	77
FIGURE 7-2: PLANNED DEVELOPMENT (SOURCE: MEDWAY PLANNING DEPARTMENT, 2018)	78
FIGURE 7-3: SEPTIC SYSTEM FAILURES	81
FIGURE 7-4: AVERAGE DAILY DEMAND, HISTORIC AND PROJECTED	88
FIGURE 7-5. MAXIMUM DAILY HISTORIC AND PROJECTED DEMAND	89
FIGURE 7-6: REPORTED TOTAL POPULATION AND POPULATION SERVED (2009-2016)	94
FIGURE 7-7: REPORTED RGPCD (2009-2016)	94
FIGURE 7-8: REPORTED UAW (2009-2016)	95
FIGURE 7-9: MEDWAY PROBLEM DRAINAGE AREAS	103
FIGURE 8-1: MEDWAY WATER SYSTEM INTERCONNECTIONS	107
FIGURE 8-2: MEDWAY WATER RESOURCES SYSTEM INTERCONNECTIONS WITH S	Strategic
ALTERNATIVES	109
FIGURE 8-3: STELLA MODEL LAYOUT FOR MEDWAY'S INTEGRATED SYSTEM	112
FIGURE 8-4: STELLA MODEL LAYOUT FOR MEDWAY'S DRINKING WATER SYSTEM	113
FIGURE 8-5: DRINKING WATER DEMAND PROJECTIONS AND CURRENT DEMAND LEVEL	114
FIGURE 8-6: PRECIPITATION VS. TOTAL FLOW INTO CRPCD	115
FIGURE 8-7: MODEL VALIDATION FOR STORMWATER INFLUENCE ON FLOW TO CRPCD	116
FIGURE 8-8: SCREENING RESULTS FOR THREE MODEL ALTERNATIVES	118
FIGURE 8-9: MODEL SCENARIO RESULTS	120

LIST OF APPENDICES

Appendix A: IWRMP Brochure & Task Force Meeting Summaries Appendix B: Flow Metering Assessment Technical Memorandum Appendix C: Preliminary Outfall Catchment Delineation Analysis

Executive Summary

This Integrated Water Resources Management Plan (IWRMP) for the Town of Medway, Massachusetts is formulated in response to the needs of the Town and designed to protect the environmental resources both within Medway and within the broader region surrounding the Town. The purpose is to provide a plan to meet the Town's water resources needs, establishing a sustainable approach that responds to today's challenges while supporting future growth and development. To fully realize the potential of integrated solutions to Medway's water resource challenges, local interactions amongst the water resources systems must be understood.

As with most municipalities, Medway's public infrastructure needs continue to grow and create competing demands for limited Town resources. The Department of Public Services (DPS) operates and maintains the Town's domestic water system, wastewater collection system, and stormwater system. Each of these systems requires continual management and improvement to meet the changing needs of the Town while maintaining compliance with various state and federal regulations. This IWRMP documents existing conditions within these three municipal infrastructure systems, identifies and prioritizes system needs to support community goals, and presents a management plan that meets system needs within a sustainable operational framework to proactively manage Town infrastructure now and into the future.

Regulatory Drivers

Medway's DPS operates and maintains municipal infrastructure systems that are subject to local, state and federal regulations. These regulations contribute to the definition of "need" insofar as operating standards and regulatory compliance represent a minimum threshold of investment. The primary permits and associated operating regulations under which the Town manages water resource infrastructures include:

- Water Management Act (WMA) Permit (potable water)
- Municipal separate storm sewer system (MS4) National Pollution Discharge Elimination System (NPDES) General Permit (stormwater)
- Charles River Pollution Control District (CRPCD) NPDES Permit (wastewater Co-Permittee)

Goals/Strategies

The IWRMP continues the Town's efforts to achieve goals established in the 2009 Master Plan, as well as goals specifically tied to the performance of the water resources systems. These include:

- 1. Improve and protect water quality and quantity.
- 2. Protect water supply sources through local land use mechanisms.
- Implement comprehensive water conservation measures, including leak detection, metering, conservation-oriented water rates, drought contingency plans, and public education.
- 4. Take an active role in maintaining and/or increasing Medway's allocated capacity at the CRPCD.
- 5. Mitigate environmental impacts of stormwater-driven water quality impairments through local and regional implementation of best management practices (BMPs), both structural and non-structural.
- 6. Establish an implementation plan for long term sustainability that is affordable, effective and achievable.
- Improve Town processes to eliminate barriers and streamline effective management of water resources.

This IWRMP includes the following implementation strategies for needed improvements to the water resources systems:

- Support operations and maintenance (O&M) efforts of the DPS, including funding annual infrastructure management needs such as I/I removal, leak detection, catch basin cleaning and street sweeping.
- Modify local site design or development standards to encourage creative approaches to water resources management, including incorporating low impact development, green infrastructure, and enhanced water conservation, where appropriate.
- Engage the public in understanding the water resources systems to encourage voluntary behaviors that improve conservation efforts, manage wastewater flows and improve stormwater runoff quality.

Public Participation

The Town solicited and encouraged public participation in the IWRMP effort through three primary sources:

Town of Medway Draft Integrated Water Resources Management Plan

- Public Communication Through execution of a detailed Communication Plan (outlined in Section 2.2) the Town provided an overview of the IWRMP process and regular updates on the planning process. Outreach through a variety of media was critical to successfully reach residents and business owners.
- Citizens Advisory Task Force (CATF) Representation The CATF was initiated to invite knowledgeable stakeholders and partners, who in turn act as an extension of the public. Each participant provided insight into the key issues that concerned their constituents and brought updates on the IWRMP process back to the broader stakeholders whom they represented.
- 3. Public Participation Through scheduled presentations, the public reviewed the details of the draft IWRMP and provided feedback for incorporation into the final IWRMP.

The details of the public participation process through the IWRMP development is described in Chapter 2.

Built and Natural Environment

Medway's water resources systems interact with both the built and natural environment in a variety of ways. Most of the Town (60.7%) is zoned residential, which contributes to a high demand on municipal water and wastewater services, as well as contributing stormwater runoff. The Town's buildout analysis shows that over 2000 new homes and more that 4.1 million square feet of commercial and industrial space would contribute to increased water demands. While the Town currently has a moratorium on sewer extensions, supporting this future development is in the best interest of the Town, however careful planning is needed to minimize impacts on the environment. Population growth projections allow for planning for future needs. The Town benefits from a variety of natural resources, including the Charles River and a robust groundwater supply, however continued protection of these resources is required for long term sustainability.

Water Resources Systems and Needs

The DPS manages the three municipal water resources systems: wastewater, domestic water and stormwater. The wastewater system was first developed in 1977 and serves the central and southern areas of Town. Wastewater is transported to the Charles River Pollution Control District, of which Medway is a co-permittee. Medway contributes approximately 0.8 million gallons per day to the treatment plant, currently using approximately 83% of its allocated capacity. As such, the Town has suspended the extension of the sewer system through a moratorium, although residents located along the current sewer alignment can connect as their capacity is reserved through betterment previously assessed. Infiltration and inflow represent extraneous flows in some portions of the system, contributing to reduced wet weather capacity and inflating the wastewater discharge to the plant. The remaining portion of the Town utilizes on-site wastewater management systems (septic), although there are many challenges related to the suitability of soils within the Town. A summary of the wastewater needs discussed in Chapter 7 are summarized below:

	Address I/I	Managing wastewater flows to the CRPCD requires identification and removal of extraneous flows from the wastewater collection system.
	Improve Sewer System Operations	Support I/I mitigation and identify structural defects in aging infrastructure.
	Install permanent flow meters	Provide actual measured flows to CRPCD and remove the uncertainty of calculating flow contributions based on assumptions.
Near Term Needs	Improve record keeping of septic failures	Allow septic data to be queried real-time and provide the Board of Health more reliable information.
	Provide public education for septic owners	Help homeowners
	Purchase Available Wastewater Capacity at CRPCD from Franklin	Allow the Town to continue with planned development and provide sustainable wastewater collection into the future. Allow the Town to lift the sewer moratorium.
Long Term Needs	Limited Sewer Extensions	Connect failed septic systems to the collection system if capacity becomes available.

Table ES-1: Wastewater Needs

Medway is facing an ongoing challenge as it nears its allocated capacity for wastewater treatment at the CRPCD. Planned developments will push the Town past its capacity in the next 15 years, which limits future development potential in Town, as well as the opportunity to extend sewers to current septic users.

The domestic drinking water system is supplied through groundwater wells with an annual maximum raw water withdrawal limit of 0.92 MGD on an average basis. Regular treatment is provided for the domestic water system to control naturally occurring iron and manganese, as well as to provide corrosion control, disinfection and fluoridation. Ongoing challenges with treatment at the Oakland Street well have limited its use, and effectively reduced the available water supply for the Town. While the DPS is still able to meet the daily water demand, long term stability of the

Town of Medway Draft Integrated Water Resources Management Plan supply depends on reinstating the full capacity of the groundwater wells through additional treatment. In addition, with population projected to increase, this effort is especially critical to support growth within Town. The water system is also at risk if the largest supply well, Populatic, were to be taken offline for repairs or emergency. The lack of redundancy and limited intermunicipal water system connections further threaten the system. In addition, reducing the volume of unaccounted for water (UAW) can help to offset supply limitation. A summary of the drinking water needs discussed in Chapter 7 are summarized below:

Redundancy; System Capacity be satisfied without the Populatic Well or a source of emergency supply. Sources of emergency supply, equipment and protocols are not well established. Water treatment improvement / expansion is needed to supply near and long-term demand. The Town is close to exceeding its supply. Reducing UAW; Increasing WMA Permit Limit UAW has exceeded the State Performance Standard in all seven of the last reporting periods. This needs to be addressed so that Medway can request an increase in its WMA Permit to withdraw water. Improving Documentation Better documentation procedures are needed to project Medway's drinking water demands and measure system performance more accurately. Infrastructure Updates to the Town's hydraulic model can help inform strategic decisions regarding the appropriate phasing of infrastructure replacement projects. Promoting Conservation Reducing demand through conservation efforts can reduce stress on the drinking water system infrastructure. Managing Demand from Future Developments The Town currently does not have a water use review policy to determine if the domestic water system can accommodate the needs of proposed developments. Increasing System Capacity The Town can use the Oakland Street well more regularly if the well's water is treated for Iron and Manganese. Increasing WMA Permited Volume Projections show demand exceeding the WMA authorized withdrawal limit in most scenarios by 2025. Evaluate Reclaimed/Grey Water for Industrial and Reclaimed water is used directly in non-potable apoliciations such as irri		Desilionard	Currently, outended periods of high demand courses					
Near Term NeedsSystem Capacityemergency supply. Sources of emergency supply, equipment and protocols are not well established. Water treatment improvement / expansion is needed to supply near and long-term demand. The Town is close to exceeding its supply.Near Term NeedsReducing UAW; Increasing WMA Permit LimitUAW has exceeded the State Performance Standard in all seven of the last reporting periods. This needs to be addressed so that Medway can request an increase in its WMA Permit to withdraw water.Improving DocumentationBetter documentation procedures are needed to project Medway's drinking water demands and measure system performance more accurately.InfrastructureUpdates to the Town's hydraulic model can help inform strategic decisions regarding the appropriate phasing of infrastructure replacement projects.Promoting ConservationReduce stress on the drinking water system infrastructure.Managing Demand from Future DevelopmentsThe Town currently does not have a water use review policy to determine if the domestic water system can accommodate the needs of proposed developments.Long Term NeedsIncreasing System CapacityThe Town currently does not have a water use regularly if the well's water is treated for Iron and Manganese.Increasing WMA Permited VolumeProjections show demand exceeding the WMA authorized withdrawal limit in most scenarios by 2025.Evaluate Reclaimed/Grey Water for Industrial and projections such as irrigationReclaimed water is used directly in non-potable applications		-	Currently, extended periods of high demand cannot					
Near Term Needs Reducing UAW; Increasing WMA Permit Limit UAW has exceeded the State Performance Standard in all seven of the last reporting periods. This needs to be addressed so that Medway can request an increase in its WMA Permit to withdraw water. Improving Documentation Better documentation procedures are needed to project Medway's drinking water demands and measure system performance more accurately. Infrastructure Updates to the Town's hydraulic model can help inform strategic decisions regarding the appropriate phasing of infrastructure replacement projects. Promoting Conservation Reducing demand through conservation efforts can reduce stress on the drinking water system infrastructure. Long Term Needs Increasing System Future Developments The Town currently does not have a water use review policy to determine if the domestic water system can accommodate the needs of proposed developments. Increasing System Capacity The Town can use the Oakland Street well more regularly if the well's water is treated for Iron and Manganese. Increasing WMA Permited Volume Projections show demand exceeding the WMA authorized withdrawal limit in most scenarios by 2025. Evaluate Reclaimed/Grey Water for Industrial and andications such as irrination Reclaimed water is used directly in non-potable andications								
Near Term Needs Water treatment improvement / expansion is needed to supply near and long-term demand. The Town is close to exceeding its supply. Near Term Needs Reducing UAW; Increasing WMA Permit Limit UAW has exceeded the State Performance Standard in all seven of the last reporting periods. This needs to be addressed so that Medway can request an increase in its WMA Permit to withdraw water. Improving Documentation Better documentation procedures are needed to project Medway's drinking water demands and measure system performance more accurately. Infrastructure Updates to the Town's hydraulic model can help inform strategic decisions regarding the appropriate phasing of infrastructure. Promoting Conservation Reducing demand through conservation efforts can reduce stress on the drinking water system infrastructure. Long Term Needs Increasing System Future Developments The Town currently does not have a water use review policy to determine if the domestic water system can accommodate the needs of proposed developments. Long Term Needs Increasing System Capacity The Town can use the Oakland Street well more regularly if the well's water is treated for Iron and Manganese. Increasing WMA Permitted Volume Projections show demand exceeding the WMA authorized withdrawal limit in most scenarios by 2025. Evaluate Reclaimed/Grey Water for Industrial and Reclaimed water is used directly in non-potable annications such as irrination		System Capacity						
Near Term Needs to supply near and long-term demand. The Town is close to exceeding its supply. Reducing UAW; Increasing WMA Permit Limit UAW has exceeded the State Performance Standard in all seven of the last reporting periods. This needs to be addressed so that Medway can request an increase in its WMA Permit to withdraw water. Improving Documentation Better documentation procedures are needed to project Medway's drinking water demands and measure system performance more accurately. Infrastructure Updates to the Town's hydraulic model can help inform strategic decisions regarding the appropriate phasing of infrastructure replacement projects. Promoting Conservation Reducing demand through conservation efforts can reduce stress on the drinking water system infrastructure. Managing Demand from Future Developments The Town currently does not have a water use review policy to determine if the domestic water system can accommodate the needs of proposed developments. Increasing System The Town can use the Oakland Street well more regularly if the well's water is treated for Iron and Manganese. Increasing WMA Projections show demand exceeding the WMA authorized withdrawal limit in most scenarios by 2025. Evaluate Reclaimed/Grey Water for Industrial and Reclaimed water is used directly in non-potable anicrations such as irrigation								
Near Term Needs The Town is close to exceeding its supply. Reducing UAW; Increasing WMA Permit Limit UAW has exceeded the State Performance Standard in all seven of the last reporting periods. This needs to be addressed so that Medway can request an increase in its WMA Permit to withdraw water. Improving Documentation Better documentation procedures are needed to project Medway's drinking water demands and measure system performance more accurately. Infrastructure Updates to the Town's hydraulic model can help inform strategic decisions regarding the appropriate phasing of infrastructure replacement projects. Promoting Conservation Reducing demand through conservation efforts can reduce stress on the drinking water system infrastructure. Managing Demand from Future Developments The Town currently does not have a water use review policy to determine if the domestic water system can accommodate the needs of proposed developments. Increasing System The Town can use the Oakland Street well more regularly if the well's water is treated for Iron and Manganese. Increasing WMA Permitted Volume Projections show demand exceeding the WMA authorized withdrawal limit in most scenarios by 2025. Evaluate Reclaimed/Grey Water for Industrial and Reclaimed water is used directly in non-potable applications such as irrigation								
Reducing UAW; Increasing WMA Permit Limit UAW has exceeded the State Performance Standard in all seven of the last reporting periods. This needs to be addressed so that Medway can request an increase in its WMA Permit to withdraw water. Improving Documentation Better documentation procedures are needed to project Medway's drinking water demands and measure system performance more accurately. Infrastructure Updates to the Town's hydraulic model can help inform strategic decisions regarding the appropriate phasing of infrastructure replacement projects. Promoting Conservation Reducing demand through conservation efforts can reduce stress on the drinking water system infrastructure. Managing Demand from Future Developments The Town currently does not have a water use review policy to determine if the domestic water system can accommodate the needs of proposed developments. Increasing System Capacity The Town can use the Oakland Street well more regularly if the well's water is treated for Iron and Manganese. Increasing WMA Permitted Volume Projections show demand exceeding the WMA authorized withdrawal limit in most scenarios by 2025. Evaluate Reclaimed/Grey Water for Industrial and Reclaimed water is used directly in non-potable antications such as irrination			to supply near and long-term demand.					
Reducing UAW; Increasing WMA Permit Limit UAW has exceeded the State Performance Standard in all seven of the last reporting periods. This needs to be addressed so that Medway can request an increase in its WMA Permit to withdraw water. Improving Documentation Better documentation procedures are needed to project Medway's drinking water demands and measure system performance more accurately. Infrastructure Updates to the Town's hydraulic model can help inform strategic decisions regarding the appropriate phasing of infrastructure replacement projects. Promoting Conservation Reducing demand through conservation efforts can reduce stress on the drinking water system infrastructure. Managing Demand from Future Developments The Town currently does not have a water use review policy to determine if the domestic water system can accommodate the needs of proposed developments. Increasing System Capacity The Town can use the Oakland Street well more regularly if the well's water is treated for Iron and Manganese. Increasing WMA Permitted Volume Projections show demand exceeding the WMA authorized withdrawal limit in most scenarios by 2025. Evaluate Reclaimed/Grey Water for Industrial and Reclaimed water is used directly in non-potable antications such as irrination	Near Term Needs		The Town is close to exceeding its supply.					
Limitto be addressed so that Medway can request an increase in its WMA Permit to withdraw water.Improving DocumentationBetter documentation procedures are needed to project Medway's drinking water demands and measure system performance more accurately.InfrastructureUpdates to the Town's hydraulic model can help inform strategic decisions regarding the appropriate phasing of infrastructure replacement projects.Promoting ConservationReducing demand through conservation efforts can reduce stress on the drinking water system infrastructure.Managing Demand from Future DevelopmentsThe Town currently does not have a water use review policy to determine if the domestic water system can accommodate the needs of proposed developments.Increasing System CapacityThe Town can use the Oakland Street well more regularly if the well's water is treated for Iron and Manganese.Increasing WMA Permitted VolumeProjections show demand exceeding the WMA authorized withdrawal limit in most scenarios by 2025.Evaluate Reclaimed/Grey Water for Industrial andReclaimed water is used directly in non-potable annications such as irrination		Reducing UAW;	UAW has exceeded the State Performance Standard					
Improving Documentation Better documentation procedures are needed to project Medway's drinking water demands and measure system performance more accurately. Infrastructure Updates to the Town's hydraulic model can help inform strategic decisions regarding the appropriate phasing of infrastructure replacement projects. Promoting Conservation Reducing demand through conservation efforts can reduce stress on the drinking water system infrastructure. Managing Demand from Future Developments The Town currently does not have a water use review policy to determine if the domestic water system can accommodate the needs of proposed developments. Increasing System The Town can use the Oakland Street well more regularly if the well's water is treated for Iron and Manganese. Increasing WMA Projections show demand exceeding the WMA authorized withdrawal limit in most scenarios by 2025. Evaluate Reclaimed/Grey Water for Industrial and Reclaimed water is used directly in non-potable andications such as irrination		Increasing WMA Permit	in all seven of the last reporting periods. This needs					
Improving Documentation Better documentation procedures are needed to project Medway's drinking water demands and measure system performance more accurately. Infrastructure Updates to the Town's hydraulic model can help inform strategic decisions regarding the appropriate phasing of infrastructure replacement projects. Promoting Conservation Reducing demand through conservation efforts can reduce stress on the drinking water system infrastructure. Managing Demand from Future Developments The Town currently does not have a water use review policy to determine if the domestic water system can accommodate the needs of proposed developments. Increasing System The Town can use the Oakland Street well more regularly if the well's water is treated for Iron and Manganese. Increasing WMA Projections show demand exceeding the WMA authorized withdrawal limit in most scenarios by 2025. Evaluate Reclaimed/Grey Water for Industrial and Reclaimed water is used directly in non-potable andications such as irrination		Limit	to be addressed so that Medway can request an					
Infrastructure Updates to the Town's hydraulic model can help inform strategic decisions regarding the appropriate phasing of infrastructure replacement projects. Promoting Conservation Reducing demand through conservation efforts can reduce stress on the drinking water system infrastructure. Managing Demand from Future Developments The Town currently does not have a water use review policy to determine if the domestic water system can accommodate the needs of proposed developments. Increasing System Capacity The Town can use the Oakland Street well more regularly if the well's water is treated for Iron and Manganese. Increasing WMA Permitted Volume Projections show demand exceeding the WMA authorized withdrawal limit in most scenarios by 2025. Evaluate Reclaimed/Grey Water for Industrial and Reclaimed water is used directly in non-potable annications such as irringtion			increase in its WMA Permit to withdraw water.					
Infrastructure Updates to the Town's hydraulic model can help inform strategic decisions regarding the appropriate phasing of infrastructure replacement projects. Promoting Conservation Reducing demand through conservation efforts can reduce stress on the drinking water system infrastructure. Managing Demand from Future Developments The Town currently does not have a water use review policy to determine if the domestic water system can accommodate the needs of proposed developments. Increasing System Capacity The Town can use the Oakland Street well more regularly if the well's water is treated for Iron and Manganese. Increasing WMA Permitted Volume Projections show demand exceeding the WMA authorized withdrawal limit in most scenarios by 2025. Evaluate Reclaimed/Grey Water for Industrial and Reclaimed water is used directly in non-potable anplications such as irrigation		Improving Documentation	Better documentation procedures are needed to					
Infrastructure Improvements Updates to the Town's hydraulic model can help inform strategic decisions regarding the appropriate phasing of infrastructure replacement projects. Promoting Conservation Reducing demand through conservation efforts can reduce stress on the drinking water system infrastructure. Managing Demand from Future Developments The Town currently does not have a water use review policy to determine if the domestic water system can accommodate the needs of proposed developments. Increasing System Capacity The Town can use the Oakland Street well more regularly if the well's water is treated for Iron and Manganese. Increasing WMA Permitted Volume Projections show demand exceeding the WMA authorized withdrawal limit in most scenarios by 2025. Evaluate Reclaimed/Grey Water for Industrial and Reclaimed water is used directly in non-potable applications such as irrination			project Medway's drinking water demands and					
Improvementsinform strategic decisions regarding the appropriate phasing of infrastructure replacement projects.Promoting ConservationReducing demand through conservation efforts can reduce stress on the drinking water system infrastructure.Managing Demand from Future DevelopmentsThe Town currently does not have a water use review policy to determine if the domestic water system can accommodate the needs of proposed developments.Long Term NeedsIncreasing System CapacityThe Town can use the Oakland Street well more regularly if the well's water is treated for Iron and Manganese.Increasing WMA Permitted VolumeProjections show demand exceeding the WMA authorized withdrawal limit in most scenarios by 2025.Evaluate Reclaimed/Grey Water for Industrial andReclaimed water is used directly in non-potable annications such as irrigation			measure system performance more accurately.					
Long Term NeedsIncreasing System CapacityThe Town can use the Oakland Street well more regularly if the well's water is treated for Iron and Manganese.Increasing WMA Permitted VolumeProjections show demand exceeding the WMA authorized withdrawal limit in most scenarios by 2025.Evaluate Reclaimed/Grey Water for Industrial andReclaimed water is used directly in non-potable applications such as irrigation		Infrastructure	Updates to the Town's hydraulic model can help					
Long Term NeedsIncreasing System CapacityThe Town can use the Oakland Street well more regularly if the well's water is treated for Iron and Manganese.Increasing WMA Permitted VolumeProjections show demand exceeding the WMA authorized withdrawal limit in most scenarios by 2025.Evaluate Reclaimed/Grey Water for Industrial andReclaimed water is used directly in non-potable applications such as irrination		Improvements	inform strategic decisions regarding the appropriate					
Long Term NeedsManaging Demand from Future DevelopmentsThe Town currently does not have a water use review policy to determine if the domestic water system can accommodate the needs of proposed developments.Long Term NeedsIncreasing System CapacityThe Town can use the Oakland Street well more regularly if the well's water is treated for Iron and Manganese.Increasing WMA Permitted VolumeProjections show demand exceeding the WMA authorized withdrawal limit in most scenarios by 2025.Evaluate Reclaimed/Grey Water for Industrial andReclaimed water is used directly in non-potable applications such as irrigation			phasing of infrastructure replacement projects.					
Long Term NeedsManaging Demand from Future DevelopmentsThe Town currently does not have a water use review policy to determine if the domestic water system can accommodate the needs of proposed developments.Long Term NeedsIncreasing System CapacityThe Town can use the Oakland Street well more regularly if the well's water is treated for Iron and Manganese.Increasing WMA Permitted VolumeProjections show demand exceeding the WMA authorized withdrawal limit in most scenarios by 2025.Evaluate Reclaimed/Grey Water for Industrial andReclaimed water is used directly in non-potable applications such as irrigation		Promoting Conservation	Reducing demand through conservation efforts can					
Long Term NeedsManaging Demand from Future DevelopmentsThe Town currently does not have a water use review policy to determine if the domestic water system can accommodate the needs of proposed developments.Long Term NeedsIncreasing System CapacityThe Town can use the Oakland Street well more regularly if the well's water is treated for Iron and Manganese.Increasing WMA Permitted VolumeProjections show demand exceeding the WMA authorized withdrawal limit in most scenarios by 2025.Evaluate Reclaimed/Grey Water for Industrial andReclaimed water is used directly in non-potable applications such as irrigation		, , , , , , , , , , , , , , , , , , ,	-					
Long Term NeedsFuture Developmentsreview policy to determine if the domestic water system can accommodate the needs of proposed developments.Increasing System CapacityThe Town can use the Oakland Street well more regularly if the well's water is treated for Iron and Manganese.Increasing WMA Permitted VolumeProjections show demand exceeding the WMA authorized withdrawal limit in most scenarios by 2025.Evaluate Reclaimed/Grey Water for Industrial andReclaimed water is used directly in non-potable applications such as irrigation			infrastructure.					
Long Term Needssystem can accommodate the needs of proposed developments.Increasing System CapacityThe Town can use the Oakland Street well more regularly if the well's water is treated for Iron and Manganese.Increasing WMA Permitted VolumeProjections show demand exceeding the WMA authorized withdrawal limit in most scenarios by 2025.Evaluate Reclaimed/Grey Water for Industrial andReclaimed water is used directly in non-potable applications such as irrigation		Managing Demand from	The Town currently does not have a water use					
Long Term Needssystem can accommodate the needs of proposed developments.Increasing System CapacityThe Town can use the Oakland Street well more regularly if the well's water is treated for Iron and Manganese.Increasing WMA Permitted VolumeProjections show demand exceeding the WMA authorized withdrawal limit in most scenarios by 2025.Evaluate Reclaimed/Grey Water for Industrial andReclaimed water is used directly in non-potable applications such as irrigation		Future Developments	review policy to determine if the domestic water					
Long Term Needs developments. Increasing System The Town can use the Oakland Street well more Capacity regularly if the well's water is treated for Iron and Manganese. Increasing WMA Permitted Volume Projections show demand exceeding the WMA authorized withdrawal limit in most scenarios by 2025. Evaluate Reclaimed/Grey Reclaimed water is used directly in non-potable applications such as irrigation applications such as irrigation								
Capacityregularly if the well's water is treated for Iron and Manganese.Increasing WMA Permitted VolumeProjections show demand exceeding the WMA authorized withdrawal limit in most scenarios by 2025.Evaluate Reclaimed/Grey Water for Industrial andReclaimed water is used directly in non-potable applications such as irrigation	Long Term Needs							
Capacityregularly if the well's water is treated for Iron and Manganese.Increasing WMA Permitted VolumeProjections show demand exceeding the WMA authorized withdrawal limit in most scenarios by 2025.Evaluate Reclaimed/Grey Water for Industrial andReclaimed water is used directly in non-potable applications such as irrigation		Increasing System	The Town can use the Oakland Street well more					
Manganese.Increasing WMA Permitted VolumeProjections show demand exceeding the WMA authorized withdrawal limit in most scenarios by 2025.Evaluate Reclaimed/Grey Water for Industrial andReclaimed water is used directly in non-potable applications such as irrigation		- -	regularly if the well's water is treated for Iron and					
Increasing WMAProjections show demand exceeding the WMAPermitted Volumeauthorized withdrawal limit in most scenarios by 2025.Evaluate Reclaimed/Grey Water for Industrial andReclaimed water is used directly in non-potable applications such as irrigation								
Permitted Volume authorized withdrawal limit in most scenarios by 2025. Evaluate Reclaimed/Grey Water for Industrial and Reclaimed water is used directly in non-potable applications such as irrigation.		Increasing WMA						
2025. Evaluate Reclaimed/Grey Water for Industrial and Reclaimed water is used directly in non-potable applications such as irrigation		5						
Water for Industrial and Applications such as irrigation								
water for industrial and applications such as irrigation		Evaluate Reclaimed/Grey						
Agricultural Line applications such as irrigation.		Water for Industrial and						
Agricultural Ose		Agricultural Use	applications such as irrigation.					

Table ES-2: Drinking Water Needs

Evaluate Reclaimed Water from CRPCD for Indirect Potable Reuse

Reclaimed water from CRPCD is used to recharge the underlying aquifer, indirectly supplying the Town's GW Wells.

Medway's drinking water supply is at immediate risk due to a lack of redundancy and reliability. Challenges with water quality continue to drive the Town's infrastructure priorities, and distribution system upgrades are overdue. Management of unaccounted for water through leak and break detection is critical to meeting demand and allowing for future growth.

The stormwater system serves to provide drainage throughout the Town, discharging into the various water bodies, including the Charles River. The MS4 NPDES permit governs the quality of these discharges and drives most of the needs for the stormwater system. While flooding related to insufficient capacity and beaver dam construction does occur, the DPS efforts focus on mapping of the stormwater system, as well as sampling. Further regulatory driven activities are needed as the new permit is enacted.

	Reduce TMDLs in Charles River	Develop and implement Phosphorus Control Plan					
Regulatory Requirements	MS4 Permit Compliance	Town must continue with the activities outline in the MS4 permit including public education and involvement, their IDDE program, construction site stormwater runoff management, stormwater management in development, and housekeeping/O&M procedures.					
Near Term Needs	Address Localized Flooding Manage Impervious Cover of Proposed Developments Promote Public Education and Engagement	The Town should address the hydraulic inadequacies in stormwater drainage system Impervious coverage from commercial development may contribute to increased stormwater runoff Proper education of the public may help to address residential stormwater issues and develop support for future programs					
Long Term Needs	Promote Stormwater Capture and Infiltration Improve Town's Stormwater Inspection and Maintenance Procedures	Stormwater runoff from future development may contribute to drainage/flooding issues; Groundwater infiltration will support existing streams and drinking water supply Town must address the inconsistencies in rules and regulations related to managing stormwater assets and BMPs					

Table ES-3: Stormwater Needs

Regulatory requirements drive most of the Town's stormwater system needs, however overall site development and public education are critical to protect this system as the Town continues to grow. Managing water quantity and quality are equally important.

Evaluation of Alternatives

Using an integrated planning model, called Stella (see Chapter 8), the IWRMP analyzed the Town's water resources system needs to identify alternatives that had the greatest impact on each system individually as well as on multiple systems. These results informed the final plan which sought to prioritize alternatives and recommendations based on their impacts, the needs of the Town and the criticality of implementation. In terms of criticality, recommendations are broken-down into three categories:

- High Priority represents activities that require the Town's immediate attention in the first few years of the IWRMP implementation plan. These recommendations may be required by permits, critical needs for the water resource systems, or influential towards the implementation of future recommendations.
- Medium Priority reflects some of the ongoing and proposed activities that that the Town undertakes to maintain and/or improve the water resource systems. This includes assessments of system performance, targeted system infrastructure rehabilitation and improvements, yearly system maintenance, and the implementation of tools to assist with system management.
- Low Priority less critical activities that will help to optimize system performance and/or management. These recommendations provide support to other IWRMP recommendations and are spread throughout the first 10 years of the implementation plan.

Integrated Water Resources Management Plan (IWRMP)

Medway's IWRMP provides a long-term (20-year) plan which prioritizes needs from the three water resources systems: wastewater, domestic water, stormwater. This plan provides a roadmap for the DPS to manage its resources in an integrated manner, by tackling the most critical issues through solutions that provide multiple benefits throughout the systems. This approach provides a thoughtful approach to allow for long term sustainability of the systems, as well as cost-effective alternatives. The recommended implementation plan for the IWRMP is shown in Table ES-4 through ES-7. Tables ES-4 and ES-5 document the Town's existing programs which will continue under the IWRMP. Medway has already begun to implement this IWRMP, including making

changes to its operations and maintenance efforts to identify and reduce unaccounted for water, as well as initiating capital projects. In addition, the MS4 program has previously been planned with the implementation of the new permit in 2018. Many of the programs identified as high and medium priorities have been initiated by the Town and are included herein to further support the good work that is already underway.

This plan requires targeted spending early in the implementation period to address critical weaknesses, specifically in the water supply system. Roughly 66% of the IWRMP total cost is associated with improvements to the drinking water system. As the Town continues to implement this long-term plan, there are various sources of funding for the components of the IWRMP that include those from within Medway (such as taxes, betterments and bonds), those from state and federal agencies (such as the State Revolving Fund (SRF) and other grants/loans) and those from private parties.

The Town will continue to use this IWRMP framework as a planning tool, creating a living document for its infrastructure needs. As new studies and projects are identified, they will be included in the plan. As such, the later years of this 20-year plan will continue to be modified, especially as the Town completes its upcoming Water System Master Plan update, and other studies which will further inform capital needs. Changes in State or Federal regulations, or environmental conditions may also initiate new projects for inclusion in the IWRMP.

Table ES-4: IWRMP Current Spending Implementation Plan Years 0-10 (2018 Dollars)

	Water Resource	Current Program	Current Estimated Value	Y0 2019	Y1 2020	Y2 2021	Y3 2022	Y4 2023	Y5 2024	Y6 2025	Y7 2026	Y8 2027	Y9 2028	Y10 2029
High	SW	MS4 Program Implementation	\$4,856,000	\$468,500	\$444,500	\$405,500	\$424,000	\$412,500	\$480,000	\$455,500	\$415,500	\$435,000	\$423,000	\$492,000
Ξ		Subtotal High Priority Cost:	\$ 4,856,000	\$468,500	\$444,500	\$405,500	\$424,000	\$412,500	\$480,000	\$455,500	\$415,500	\$435,000	\$423,000	\$492,000
	WW	Permanent Sewer System Metering	\$247,000	\$27,000	\$22,000	\$22,000	\$22,000	\$22,000	\$22,000	\$22,000	\$22,000	\$22,000	\$22,000	\$22,000
	WW	SSES Investigations and Rehabilitation	\$1,000,000		\$200,000		\$200,000		\$200,000		\$200,000		\$200,000	
	WW	Temporary Sewer System Metering	\$50,000	\$50,000										
Priority	DW	Unaccounted for Water Activities	\$110,000	\$10,000	\$10,000	\$10,000	\$10,000	\$10,000	\$10,000	\$10,000	\$10,000	\$10,000	\$10,000	\$10,000
	DW	Update Town-wide Drinking Water Hydraulic Model	\$50,000	\$50,000										
Medium	DW	Annual Water Distribution System Maintenance	\$1,100,000	\$100,000	\$100,000	\$100,000	\$100,000	\$100,000	\$100,000	\$100,000	\$100,000	\$100,000	\$100,000	\$100,000
Med	DW	Highland and Lovering Tank Painting/Cleaning	\$1,000,000				\$500,000					\$500,000		
	DW	Indoor and Outdoor Water Conservation	\$165,000	\$15,000	\$15,000	\$15,000	\$15,000	\$15,000	\$15,000	\$15,000	\$15,000	\$15,000	\$15,000	\$15,000
	ALL	Public Education and Engagement	\$11,000	\$1,000	\$1,000	\$1,000	\$1,000	\$1,000	\$1,000	\$1,000	\$1,000	\$1,000	\$1,000	\$1,000
		Subtotal Medium Priority Cost:	\$3,722,000	\$126,000	\$348,000	\$148,000	\$848,000	\$148,000	\$348,000	\$148,000	\$348,000	\$648,000	\$148,000	\$348,000
		Total IWRMP Current Spending Years 0-10 Cost:	\$8,578,000	\$594,500	\$792,500	\$553,500	\$1,272,000	\$560,500	\$828,000	\$603,500	\$763,500	\$1,083,000	\$771,000	\$640,000

Table ES-5: IWRMP Current Spending Implementation Plan Years 11-20 (2018 Dollars)

	Water Resource	Current Program	Current Estimated Value	Y11 2030	Y12 2031	Y13 2032	Y14 2033	Y15 2034	Y16 2035	Y17 2036	Y18 2037	Y19 2038	Y20 2039
High	SW	MS4 Program Implementation	\$4,609,000	\$467,000	\$426,000	\$446,000	\$433,000	\$504,000	\$478,500	\$436,500	\$457 <i>,</i> 000	\$444,000	\$517,000
		Subtotal High Priority Cost:	\$4,609,000	\$467,000	\$426,000	\$446,000	\$433,000	\$504,000	\$478,500	\$436,500	\$457,000	\$444,000	\$517,000
	WW	Permanent Sewer System Metering	\$220,000	\$22,000	\$22,000	\$22,000	\$22,000	\$22,000	\$22,000	\$22,000	\$22,000	\$22,000	\$22,000
	WW	SSES Investigations and Rehabilitation	\$1,000,000	\$200,000		\$200,000		\$200,000		\$200,000		\$200,000	
	WW	Temporary Sewer System Metering	\$50,000	\$50,000									
Priority	DW	Unaccounted for Water Activities	\$100,000	\$10,000	\$10,000	\$10,000	\$10,000	\$10,000	\$10,000	\$10,000	\$10,000	\$10,000	\$10,000
Pric	DW	Update Town-wide Drinking Water Hydraulic Model	\$50,000	\$50,000									
ium	DW	Annual Water Distribution System Maintenance	\$1,000,000	\$100,000	\$100,000	\$100,000	\$100,000	\$100,000	\$100,000	\$100,000	\$100,000	\$100,000	\$100,000
Mediul	DW	Highland and Lovering Tank Painting/Cleaning	\$1,000,000				\$500,000					\$500,000	
	DW	Indoor and Outdoor Water Conservation	\$150,000	\$15,000	\$15,000	\$15,000	\$15,000	\$15,000	\$15,000	\$15,000	\$15,000	\$15,000	\$15,000
	ALL	Public Education and Engagement	\$20,000	\$1,000	\$1,000	\$1,000	\$1,000	\$1,000	\$1,000	\$1,000	\$1,000	\$1,000	\$1,000
		Subtotal Medium Priority Cost:	\$3,590,000	\$448,000	\$148,000	\$348,000	\$648,000	\$348,000	\$148,000	\$348,000	\$148,000	\$848,000	\$148,000
	Noto:	Total IWRMP Current Spending Years 11-20 Cost:	\$8,199,000	\$915,000	\$574,000	\$794,000	\$1,081,000	\$852,000	\$626,500	\$784,500	\$605,000	\$1,292,000	\$665,000

Note:

• High, medium and low priorities represent relative importance of projects with respect to meeting regulations, maintaining operation of the water resources systems, and providing long-term service.

Water Y1 Y2 Y3 Y5 Y6 **Opinion of Y0** Y4 **Probable Cost** 2019 2020 2021 2022 2023 2024 2025 Resource Recommendation WW Purchase Available Wastewater Capacity at CRPCD \$950,000 \$950,000 Priority DW Drinking Water Quality - Treatment Improvements \$15,000,000 \$1,000,000 \$6,000,000 \$3,000,000 \$3,000,000 \$2,000,000 Drinking Water Supply Capacity Redundancy/Reliability \$2,191,000 \$467,000 \$1,347,000 \$377,000 DW \$65,000 High DW Update Emergency Drinking Water Supply Plan \$65,000 DW Pursue WMA Permit Withdrawal Limit Increase \$15,000 \$15,000 \$18,221,000 \$1,950,000 \$6,467,000 \$3,065,000 \$4,347,000 \$2,377,000 \$0 Subtotal High Priority Cost: DW Water Distribution System Improvements \$9,915,000 \$2,990,000 \$2,425,000 \$500,000 \$500,000 \$500,000 \$500,000 \$500, SW Drainage Improvements \$320,000 \$320,000 Priority SW Stormwater Structural BMPs \$137,500 \$33, SW Stormwater Infiltration Analysis \$24,000 Medium \$75,000 \$25,000 \$25,000 \$25, ALL \$475,000 \$75,000 \$75,000 \$75,000 Asset Management Program \$10,871,500 \$3,065,000 \$2,500,000 \$575,000 \$575,000 \$845,000 \$525,000 \$558, Subtotal Medium Priority Cost: Purchase CCTV Equipment to Support WW Operations WW \$150,000 \$150,000 \$920,000 WW Limited Sewer Extensions¹ Priority DW Redevelop Water Supply Impact Mitigation Fee \$20,000 \$10,000 \$10,000 SW **Promote Impervious Cover Management** \$50,000 \$30.000 \$20.000 Low ALL Review Interdepartmental Workflow for Development N/A \$180,000 \$1,140,000 \$0 \$0 \$10,000 \$10,000 \$20,000 Subtotal Low Priority Cost: \$558, \$30,232,500 \$5,015,000 \$8,967,000 \$3,650,000 \$4,932,000 \$3,402,000 \$545,000 **Total Opinion of Probable IWRMP Cost:**

Table ES-6: IWRMP Implementation Plan Years 0-10 (2018 Dollars)

Table ES-7: IWRMP Implementation Plan Years 11-20 (2018 Dollars)

	Water Resource	Recommendation	Opinion of Probable Cost	Y11 2030	Y12 2031	Y13 2032	Y14 2033	Y15 2034	Y16 2035	Y17 2036	Y18 2037	Y19 2038	Y20 2039
	DW	Water Distribution System Improvements	\$5,000,000	\$500,000	\$500,000	\$500,000	\$500,000	\$500,000	\$500,000	\$500,000	\$500,000	\$500,000	\$500,000
	SW	Install Stormwater Structural BMPs	\$60,000	\$6,000	\$6,000	\$6,000	\$6,000	\$6,000	\$6,000	\$6,000	\$6,000	\$6,000	\$6,000
ium	ALL	Asset Management Program	\$250,000	\$25,000	\$25,000	\$25,000	\$25,000	\$25,000	\$25,000	\$25,000	\$25,000	\$25,000	\$25,000
Med		Subtotal Medium Priority Cost:	\$5,256,000	\$531,000	\$531,000	\$531,000	\$531,000	\$531,000	\$531,000	\$531,000	\$531,000	\$531,000	\$531,000
		Total Opinion of Probable IWRMP Cost:	\$5,256,000	\$531,000	\$531,000	\$531,000	\$531,000	\$531,000	\$531,000	\$531,000	\$531,000	\$531,000	\$531,000

Notes:

• High, medium and low priorities represent relative importance of projects with respect to meeting regulations, maintaining operation of the water resources systems, and providing long-term service.

• IWRMP projections include current projects and programs identified within the planning period. Additional projects are expected to be identified as the Town implements its Asset Management program and updates its Water Master Plan. Changes to State and Federal regulations, environmental conditions as well as local development and growth may also drive additional spending not currently part of this plan.

Town of Medway

5	Y7 2026	Y8 2027	Y9 2028	Y10 2029		
\$0	\$0	\$0	\$0	\$0		
,000	\$500,000	\$500,000	\$500,000	\$500,000		
,500	\$46,000		\$52,000			
	\$6,000	\$6,000	\$6,000	\$6,000		
,000	\$25,000	\$25,000	\$25,000	\$25,000		
,500	\$577,000	\$531,000	\$583,000	\$531,000		
		\$175,000	\$350,000	\$400,000		
\$0	\$0	\$175,000	\$350,000	\$400,000		
,500	\$577,000	\$706,000	\$933,000	\$931,000		

¹ Sewer extension costs may be offset through betterment assessments. Costs represented herein do not include betterment offsets.

Draft Integrated Water Resources Management Plan