Medway's Integrated Water Resources Management Plan

IWRMP Update Workshop

IWRMP Task Force Medway DPS January 10, 2018

KLEINFELDER Bright People. Right Solutions.

Agenda

- 1. Introductions
- 2. Project Overview/Status
- 3. Evaluation of Scenarios
- 4. Decision Model Results
- 5. Feedback and Selection of Preferred Scenario
- 6. Next Steps
 - Fine-Tuning
 - Conceptual Designs

IWRMP Phase II

- ☑ Document Existing Conditions
- **⊡** Identify Needs
- ☑ Identify Alternatives to Address Needs
- Evaluate Alternatives and Select Preferred Solutions
- Conceptual Design
- Develop IWRMP (in progress)
- Develop Implementation Schedule

Decision Model

- Simulate <u>dynamic</u> interactions between systems:
 - \bigcirc Rainfall \checkmark , Groundwater \checkmark
 - \subset Impervious Cover \uparrow , Runoff \uparrow
 - \bigcirc Population \uparrow , Water Demand \uparrow , Wastewater \uparrow
 - ⊂ Limits: permits, water availability, capacity
 - $\ensuremath{\mathbb{C}}$ Tradeoffs: resources, quality
- Goal: quantify the tradeoffs and sensitivities as a guide for decision making

Model Parameters

- Management Alternatives: Simulated change from today's conditions
- Monthly Variability
- Precipitation: Dry/Average/Wet Years
- Calibration/Verification
 - ⊂ Recent Water Supply Data (2011-2016)
 - \bigcirc 2007-2017 Wastewater Flows

percent septic to

Decision Model Management Variables

KLEINFELDER Bright People. Right Solutions.

Decision Model – Sample Output

WATER SUPPLY OUTPUT

Decision Model WW Calibration

Simulation Results:

Scenario Summary

Scenario 1: Maintain Existing Conditions	Baseline conditions
Scenario 2: Maximize Water Resource Systems Investment	Address all alternatives and implement to maximum influence
Scenario 3: Minimize Water Resource Systems Investment	Minimize plan cost, focus on administrative/inexpensive alternatives.
Scenario 4: Drinking Water Investment	Focus on water system only
Scenario 5: Stormwater (MS4) Investment	Focus on stormwater system only
Scenario 6: Wastewater Investment	Focus on wastewater system only
Scenario 7: Water Independence	Focus on water reuse from CRPCD
Scenario 8: Hybrid/Optimized	Town preferred alternatives

KLEINFELDER

Scenario Tradeoffs

SCENARIO SUMMARY

Key Drinking Water Alternatives

Key Wastewater Alternatives

Key Stormwater Alternatives

Influence of Alternatives

Cost

Green Infrastructure	Water Reuse	Sewer Extension UAW
Stormwater Management	Well Supply Redundancy	I/I removal
Site Stormwater Capture	Manage Impervious Cover	Conservation

Influence

Drinking Water

Average Daily Demand - Actual and Projected (MGD)

Scenario	Description
1	Future residential water Use at current (2016) rate and UAW at current (2016) value
2	Future residential water use at current (2016) rate and UAW at 10%
3	Future residential water use at 65 gpcd and UAW 2011-2016 avg. value
4	Future residential water use at 65 GPCD and UAW at 10% (Umass Donahue Population)
4a	Future residential water use at 65 GPCD and UAW at 10% (MassDOT Population)

Wastewater Projections

What Other Questions Should We Address?

Next Steps Summary

Next Steps

- Conceptual Design of Alternatives (Jan-Feb)
 C Evaluate Costs
- Draft Implementation Plan (Feb-Mar)
 - $\ensuremath{\mathbb{C}}$ Review implementation schedule and costs
 - $\ensuremath{\mathbb{C}}$ Workshop and Public Meeting in April
- Complete Draft IWRMP (April)

Integrated Water Resources Management Plan

Thank you for your time!

Reference Slides – from Fall Meeting

Drinking Water

Needs	Solutions
Lack of well supply capacity	 annual well rehabilitation program to restore lost capacity; increase resiliency
Lack of well redundancy	Satellite wellsReplacement wells / wellfield
Unlikely to meet max daily demand with largest source offline	 Emergency purchase agreement with Millis Alternative water sources New supply well
meet average day demand	Stormwater captureWastewater Reuse

Drinking Water

Needs	Solutions
Future supply deficit projected	 Continue / enhance demand management Conservation education/outreach Fixture retrofits Rebates Water ban
 New regulatory constraints (WMA) Offsets required for higher withdrawal authorization 	Consult with DEP on new WMA Permit application; identify credits
Iron & manganese levels requiring treatment	Construct treatment facility
Un-accounted for water (UAW) >10%	 Meter testing / replacement program Continue Annual Leak detection Water main replacement as recommended in 2010 Master Plan

Wastewater

Needs	Alternatives
Data Gaps (flow metering)	 Permanent meter to confirm flow to CRPCD
CRPCD discharge limits	 Sewer moratorium Infiltration/Inflow (I/I) Removal Flow Metering* Illicit Connections Private Inflow Sources CCTV Inspection Manhole Sealing Cured in Place Pipelining (CIPP)
Support Planned Buildout	 Sewer Extensions I/I Removal Increase discharge limit at CRPCD

Wastewater

Needs	Solutions
 Septic systems failures Physical limitations- High groundwater, extensive wetlands; poorly drained soils. Protect Water Supply Sources 	 Decentralized Treatment System Sewer Extensions Septic Needs Support Funds
 Ongoing Maintenance Fats, Oils, Grease (FOG) Root Removal System Condition Assessment Pump Station Operation 	 Support DPS Operations CCTV Inspection of full system
Public Education	FOGIllicit ConnectionsPrivate Inflow Sources

Stormwater

Needs	Solutions
 Localized Flooding Low Topography Sedimentation Blocked Catch Basins Beaver Activity 	 Implement Green Infrastructure Address development standards Support maintenance
Mapping of SystemGIS mapping of drain systemDelineate Catchments	 Map Drain System in Problem and High Concern Catchments
 Water Quality Monitoring at Outfalls Dry Weather Flow Water Quality Sampling 	 Support DPS Operations MS4 Funding

Stormwater

Needs	Solutions
 Maintenance Good Housekeeping Catch Basin Cleaning Street Sweeping 	 Support DPS Operations MS4 Funding
Public Education	 Ongoing education programs
Water Quality Improvements	 6 Minimum Controls BMPs