NEO Manufacturing LLC and NEO Cultivation LLC

4 Marc Road

Medway, Massachusetts

Noise Mitigation Plan

Noise Mitigation Plan:

Specific noise-emitting processes:

- **Cogen Equipment:** These operations include generation of electrical power which includes heating and cooling from reciprocating engines.
- **Vegetative Rooms**: These operations include Exhaust fans and HVAC equipment.
- Flower Rooms: These operations include Exhaust fans and HVAC equipment.
- **Harvest Rooms**: These operations include Exhaust fans and HVAC equipment.
- **Drying Rooms**: These operations include Exhaust fans and HVAC equipment.
- **Trim Rooms**: These operations include Exhaust fans and HVAC equipment.
- **Packaging Rooms**: These operations include Exhaust fans and HVAC equipment.

Noise Mitigation Best Practice:

- Staff training procedures: NEO has an extensive training program that includes training specifically for noise control and maintenance and operation of equipment. Operating Procedures that all employees must follow. NEO will conduct staff meetings at these meetings we discuss noise and maintenances of equipment.
- **Monitoring and inspection**: Every noise emitting room will be continuously monitored with daily inspections for noise breakout.

Engineering Controls:

All engineering noise control devices are designed by a Professional Engineer licensed in the State of Massachusetts. An affidavit of compliance will be provided with DEP

HVAC system noise control plan:

- Closed Loop System: with limited exhaust fitted with silencers.
- **Exhaust Fans**: fans will be fitted with silencing devices to prevent breakout noise.
- **Cogen Equipment**: Industrial grade Silencers will be installed on exhaust equipment and engines.

Environmental Noise Modeling:

Neo-Organics has retained Acentech, which has conducted a study of community noise produced by mechanical equipment serving Neo Organics facility located at 4 Marc Road in Medway, Massachusetts. Acentech worked with Neo-Organics to develop this Noise Mitigation Plan. This Noise Mitigation Plan has been reviewed by an acoustical consultant whose qualifications include Institute of Noise Control Engineering (INCE) board certification.

Noise Modeling:

Acentech has developed a computer model of facility sound using CadnaA, and acoustic modeling software that considers 3-dimensional propagation of sound. This model implements the methods and equations of ISO 9613-2 "Attenuation of sound during propagation outdoors -- Part 2: General method of calculation". FIGURE 2 presents the receptor locations used in computer modeling.

The facility has noise-producing equipment located on grade that includes a 300 kw generator, a transformer, air handling units, and condensing units. In addition, there are two rooftop exhaust fans. The mechanical equipment is identified in FIGURE I. The sound power levels of the equipment are given in TABLE II below. APPENDIX A includes the sound data sheets from the manufacturers. Currently, we have assumed for worset case test study that all equipment, except the generator, will run at all hours at maximum capacity.

Description		Sound	d power	level (o	lB re: 1	oW)			
Octave-band center frequency (Hz)	<u>63</u>	<u>125</u>	<u>250</u>	<u>500</u>	1000	2000	<u>4000</u>	<u>8000</u>	<u>dBA</u>
300 kw Generator*	<u>83</u>	<u>89</u>	<u>91</u>	<u>96</u>	<u>96</u>	<u>91</u>	<u>86</u>	<u>81</u>	<u>99</u>
Exhaust Fan (EF-X)	80	<u>77</u>	<u>76</u>	<u>68</u>	<u>64</u>	<u>63</u>	<u>59</u>	<u>53</u>	<u>72</u>
Air Handling Unit (AHU-1)	<u>89</u>	<u>97</u>	<u>94</u>	<u>92</u>	<u>89</u>	<u>83</u>	<u>79</u>	<u>75</u>	<u>94</u>
Ground mounted unit (GRTU-1)	<u>89</u>	<u>85</u>	<u>87</u>	<u>81</u>	<u>79</u>	<u>78</u>	<u>73</u>	<u>62</u>	<u>85</u>
GPod Condenser Small (GPCU-1)	<u>73</u>	<u>74</u>	<u>69</u>	<u>68</u>	<u>66</u>	<u>62</u>	<u>56</u>	<u>52</u>	<u>71</u>
GPod Condenser Large (GPCU-2)	<u>38</u>	<u>55</u>	<u>56</u>	<u>60</u>	<u>62</u>	<u>61</u>	<u>52</u>	<u>49</u>	<u>66</u>
Trane Condenser (CU-1)**	<u>65</u>	<u>62</u>	<u>59</u>	<u>56</u>	<u>53</u>	<u>50</u>	<u>47</u>	<u>44</u>	<u>59</u>
Trane Condenser (DCU)**	<u>56</u>	<u>53</u>	<u>50</u>	<u>47</u>	<u>44</u>	<u>41</u>	<u>38</u>	<u>35</u>	<u>50</u>
Mitsubishi Condenser (CU-2)**	<u>65</u>	<u>62</u>	<u>59</u>	<u>56</u>	<u>53</u>	<u>50</u>	<u>47</u>	<u>44</u>	<u>59</u>
2000 kVA Transformer***	<u>80</u>	<u>82</u>	<u>77</u>	<u>77</u>	<u>71</u>	<u>66</u>	<u>61</u>	<u>54</u>	<u>77</u>

TABLE II. Equipment sound power levels used in computer modeling

* We have assumed daytime maintenance testing only.

**Octave band data unavailable, assumed spectrum.

*** Sound data estimated based on NEMA rating.

Source Strength:

The Town of Medway and their noise peer review consultant (NCE, Billerica, MA) have estimated corresponding limits in the current octave-bands in connection with another nearby facility, and we have referred to these estimates to facilitate the work. The daytime and nighttime noise limits from the ordinance in modern octave bands are shown

below in TABLE 1. The daytime noise limits are 5 dB greater than the nighttime

limits. We understand the noise ordinance to be applicable at the source property lines.

TABLE I. Medway Noise Ordinance								
Octave-band center frequency (Hz)	63	125	250	500	1000	2000	4000	8000
Nighttime	67	55	48	42	38	35	32	28
Daytime	72	60	53	47	43	40	37	33

TABLE I. Medway Noise Ordinance

Model Results, No Noise Controls

Based on our baseline computer model (as designed, no noise mitigation), we expect that the proposed equipment will *not* comply with the Medway noise ordinance at all facility property lines (see APPENDIX B, Table IV).

Noise Control Mitigation

An analysis of the noise-producing equipment revealed that the most significant noise sources are the GRTUs and AHUs. To mitigate the noise from these sources, we will be placing barriers, around the sources (3 m tall barriers for GRTUs, 4.5 m tall barriers for AHUs). We also will be selecting a generator and enclosure that meets the criteria 64 dBA at a distance of 7 m. The installment of the Generator will not be done during the first phase of Buildout so equipment's and noise mitigation will not be necessary. Once ready the company will do similar sound studies to confirm it meet the sound levels permitted

Model Results, Noise Controls

TABLE III summarizes the calculated noise levels at the property lines with noise control applied. The estimated sound levels created by MEP equipment are all below the octave-band provisions of the Medway noise regulation.

However, our model predicts that the transformer will exceed the criteria by 1 dB in the 500 Hz octave band at one property line receptor. We have used generic estimates of transformer sound power levels based on the estimated NEMA rating and surface area. The 1 dB exceedance is within the uncertainty of our model, which we will mitigate if necessary, with a sound barrier

It is possible that some equipment will have reduced fan speeds during nighttime operation, leading to reduced sound levels. Currently, we have assumed that all equipment, except the generator, will run at all hours at maximum capacity. Nighttime sound data for major equipment could influence the following noise control recommendations.

TABLE III. Estimated nighttime octave-band sound levels at facility property lines

	tou mgnttime e				olo at laolity	p. op o		
Receptor	63	125	250	500	1000	2000	4000	8000
PL01	45	51	45	42	37	29	23	<20
PL02	45	46	41	39	35	29	23	<20

PL03	42	39	39	35	32	29	21	<20
PL04	47	44	45	39	37	35	28	<20
PL05	49	45	47	40	37	35	29	<20
PL06	42	38	39	35	32	29	20	<20
PL07	37	32	32	29	26	22	<20	<20
PL08	34	34	29	25	24	<20	<20	<20
PL09	36	40	36	31	26	20	<20	<20
PL10	37	40	37	32	27	21	<20	<20
PL11	40	45	40	36	31	24	<20	<20
PL12	42	47	42	38	32	25	<20	<20
PL13	41	46	41	37	31	24	<20	<20
PL14	48	52	47	43	38	31	26	<20
Medway Noise Ordinance	67	55	48	42	38	35	32	28

Full modeling results with and without mitigation are shown in APPENDIX B.

Post Construction Testing and Validation:

Post construction testing will be done to validate installation meets the noise guidance on noise performance of the facility. This post-construction test phases of the HVAC systems includes:

- Prepare and submit for review and approval a draft noise test plan review.
- Mobilize and conduct the noise testing according to the testplan.

APPENDIX A MANUFACTURER NOISE DATA

LEVEL 2 ACOUSTIC ENCLOSURE SD300 10.3L FPT

DISTANCE: 7 METERS

MICROPHONE	OCTAVE BAND CENTER FREQUENCY (Hz)											
LOCATION	31.5	63	125	250	500	1000	2000	4000	8000	dB(A)		
FRONT	45.9	57.9	62.8	67.0	73.2	71.6	65.6	64.9	60.7	77.1		
RIGHT	43.9	61.4	64.9	67.3	70.7	73.0	68.8	62.7	58.1	77.1		
REAR	40.1	55.9	62.1	65.2	68.1	68.2	61.7	54.9	49.2	73.1		
LEFT	41.5	58.9	65.7	64.9	71.4	70.8	66.9	60.1	56.2	76.0		
AVERAGE	42.9	58.5	63.9	66.1	70.9	70.9	65.7	60.6	56.0	75.8		

	60Hz F	ULL-LOA	ND DATA,	, dB(A)				DISTA	NCE: 7 M	ETERS
MICROPHONE		OCTAVE BAND CENTER FREQUENCY (Hz)								
LOCATION	31.5	63	125	250	500	1000	2000	4000	8000	dB(A)
FRONT	46.9	58.3	64.5	68.6	73.1	69.1	67.5	65.2	61.3	76.9
RIGHT	44.0	60.6	66.4	67.8	72.4	70.8	69.2	64.9	61.6	77.3
REAR	41.9	57.4	62.7	65.0	68.6	65.5	60.7	56.2	53.9	72.6
LEFT	43.4	60.6	66.6	65.4	71.5	67.6	64.7	61.2	60.4	75.3
AVERAGE	44.0	59.2	65.1	66.7	71.4	68.2	65.5	61.9	59.3	75.6

1. All positions at 23 feet (7 meters) from side faces of generator set.

2. Test conducted on a 100 foot diameter asphault surface.

3. Sound pressure levels are subject to instrumentation, installation and testing conditions.

Job Name: Clover Prepared By: Impact Engineering Unit Tag: 15 Ton Quantity: 1

Trane Voyager Gas/Electric Packaged Rooftop

Unit Overview - YHD180G4RHB**00B1A10000000000000000000000000000000										
Application	Unit Size	Supp	ly Fan	Exterr	al Dimensior	ns (in.)	Wei	ght	EER	IEER/SEER
Gas/Electric	15 Ton	Airflow	External Static Pressure	Height	Width	Length	Minimum	Maximum	12.1 EER	14.00
		6000 cfm	1.000 in H2O	66.250 in	84.188 in	121.688 in	2241.0 lb	2663.0 lb		

Unit Features

Panels/Filters Std panels/2" pltd filters MERV 8

Unit Electrical	
Voltage/phase/hertz	460/60/3
MCA	33.00 A
MOP	45.00 A

Controls

Unit Controls Reliatel

Cooling Section					
Entering Dry Bulb 80.0	.00 F	Capacity			
Entering Wet Bulb 67.0	.00 F	Gross Total	180.52 MBh		
Ambient Temp 95.0	.00 F	Gross Sensible	142.17 MBh		
Leaving Coil Dry Bulb 58.0	.06 F	Net Total	171.67 MBh		
Leaving Coil Wet Bulb 57.3	.30 F	Net Sensible	133.32 MBh		
Leaving Unit Dry Bulb 59.7	.77 F	Fan Motor Heat	8.85 MBh		
Leaving Unit Wet Bulb 57.9	.96 F	Refrig Charge-circuit 1	13.0 lb		
Refrigeration Syste	tem Options	Refrig Charge-circuit 2	8.5 lb		
Leaving Dew Point 56.8	.82 F				

Heating Section

Heat Type	Gas
Heating Stages	2
Output Heating Capacity	280.00 MBh
Heating EAT	55.00 F
Heating LAT	98.01 F
Heating Temp Rise	43.01 F

Fan Section								
Indoor F	Fan Data	Outdoor	Fan Data					
Туре	FC Centrifugal	Туре	Propeller					
Drive Type	Belt	Fan Quantity	2					
Indoor Fan I	Performance	Drive Type	Direct					
Airflow	6000 cfm	Outdoor Fan	Performance					
Design ESP	1.000 in H2O	Outdoor Motor Power	0.89 kW					
Component SP	0.040 in H2O	Condenser Fan FLA	1.35 A					
Total SP	1.058 in H2O	Exhaust Fan	Performance					
Indoor Motor Operating Power	2.81 bhp	Exhaust Fan FLA	4.80 A					
Indoor Motor Power	2.09 kW							
Indoor RPM	709 rpm							

Compressor Sect	ion			Access	Accessories								
	Power	12.28 kW			Roof curb yes								
	Circuit 1 RLA	14.70 A											
Circuit 2 RLA 7.00 A													
Acoustics													
Sound Path	63 Hz	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	8 kHz					
Ducted Discharge	87 dB	82 dB	76 dB	79 dB	72 dB	70 dB	69 dB	63 dB					
Ducted Inlet	91 dB	82 dB	74 dB	70 dB	65 dB	60 dB	60 dB	53 dB					

92 dB

89 dB

83 dB

79 dB

94 dB

Outdoor Noise

89 dB

97 dB

75 dB

Model: AE-12-433-A4 Propeller Hooded Roof Direct Drive Exhaust Fan

Dimensional											
Quantity	1										
Weight w/o Acc's (lb)	41										
Weight w/ Acc's (lb)	43										
Max T Motor Frame Size	0										
Roof Opening (in.)	14.5 x 14.5										

Performance	ce					
Requested Volume (CFM)	1,000					
Actual Volume (CFM)	976					
Total External SP (in. wg)	0.381					
Fan RPM	1750					
Operating Power (hp)	0.14					
Elevation (ft)	663					
Airstream Temp.(F)	75					
Air Density (lb/ft3)	0.073					
Tip Speed (ft/min)	5,498					
Static Eff. (%)	43					

Motor	
Motor Mounted	Yes
Size (hp)	1/4
Voltage/Cycle/Phase	115/60/1
Enclosure	ODP
Motor RPM	1750
Windings	1

Sound Power by Octave Band

 Juna I O II	er og	oetai	• 2 an								
Sound Data	62.5	125	250	500	1000	2000	4000	8000	LwA	dBA	Sones
Inlet	80	77	76	68	64	63	59	53	72	61	11.1

Notes: All dimensions shown are in units of in. "Please consult factory for actual motor amp draw LwA - A weighted sound power level, based on ANSI S1.4 dBA - A weighted sound pressure level, based on 11.5 dB attenuation per Octave band at 5 ft - dBA levels are not licensed by AMCA International Sones - calculated using AMCA 301 at 5 ft

Generated by: matt.impactengineering@gmail.com

Acoustic Analysis Report

Project

GRW

Date

September 13, 2019

Price Acoustic Analysis utilizes industry accepted algorithms and laboratory tested data. Sources include Chapter 48 of the 2011 ASHRAE Applications Handbook, AHRI, and HVAC acoustic algorithms. Only qualified design professionals should provide noise control recommendations. Price accepts no responsibility for the design of systems through the use of Price Acoustic Analysis.

PROJECT: LOCATION: DATE: REVISION: REP NAME: REP OFFICE: ENGINEER: CONTRACTOR:

General Unit Information:

Model: GRW

Tag: Unit 1

Casing: 0.08 Aluminum

Insulation Type: 3.5" Fiberglass

Liner: 0.08 Aluminum

Latent Fans: APM Size 27 Dual

Airflow: 22,000 CFM

TSP: 4.11 in.w.g.

Fan Speed: 1456 RPM

Sensible Fans: APD Size 355 Dual

Airflow: 4,070 CFM

TSP: 3.23 in.w.g.

Fan Speed: 2365 RPM

Compressors:

Qty 3 ZPDT31 Digital Tandem

Qty 3 ZPDT36 Digital Tandem

Cond Fans

Qty 6 33" fans, ~860 RPM, 10 degrees

Sound Analysis Definitions:

Sum = Logarithmic addition of sound sources less attenuation of components and adjustment for receiver distance.

Target = target sound pressure level at a specified distance

Current = A-weighted sound pressure (dBA) or sound power (LwA) level of the sum values

PROJECT:	GRW
LOCATION:	
DATE:	SEPTEMBER 13, 2019
REVISION:	

CONDENSER FANS

Element	63Hz	125Hz	250Hz	500Hz	1KHz	2KHz	4KHz	8KHz Commen	its
Condenser Fan 1	78	74	74	72	71	70	65	53	
Condenser Fan 2	78	74	74	72	71	70	65	53	
Condenser Fan 3	78	74	74	72	71	70	65	53	
Condenser Fan 4	78	74	74	72	71	70	65	53	
Condenser Fan 5	78	74	74	72	71	70	65	53	
Condenser Fan 6	78	74	74	72	71	70	65	53	
Receiver	-24	-24	-24	-24	-24	-24	-24	-24	
Sum	62	58	58	56	55	54	49	37	
Target:									
Current: 60 dBA									

Notes:

Sound data created by theoretical methods

Sound pressure calculated at a distance of 20 feet using a directivity factor (Q) of 2 assuming one reflective surface. The environment influences sound pressure, therefore dBA levels cannot be guaranteed.

LATENT FANS RADIATED

Element	63Hz	125Hz	250Hz	500Hz	1KHz	2KHz	4KHz	8KHz	Comments
Supply Fan - Dual	89	92	98	93	90	85	80	77	
Breakout - Cabinet Attenuation	-11	-15	-20	-31	-38	-40	-40	-40	Thermoshield Cabinet
Receiver	-24	-24	-24	-24	-24	-24	-24	-24	
Sum	54	53	54	38	28	21	16	13	
Target:									
Current: 46 dBA									
Nataa									

Notes:

Sound data created by theoretical methods

LATENT FANS AT FA INLET

Element	63Hz	125Hz	250Hz	500Hz	1KHz	2KHz	4KHz	8KHz	Comments
Supply Fan - Dual	83	88	96	87	81	79	75	72	Inlet
4 Row Coil	0	-3	-3	-5	-6	-6	-8	-8	
6 Row Coil	0	-3	-5	-5	-7	-7	-9	-8	
6 Row Coil	0	-3	-5	-5	-7	-7	-9	-8	
4" Panel Filter	0	-1	-1	-2	-1	-3	-4	-4	
Receiver	-24	-24	-24	-24	-24	-24	-24	-24	
Sum	59	54	58	46	36	32	21	20	
Target:									
Current: 51 dBA									
N.L									

Notes:

Sound data created by theoretical methods

Sound pressure calculated at a distance of 20 feet using a directivity factor (Q) of 2 assuming one reflective surface. The environment influences sound pressure, therefore dBA levels cannot be guaranteed.

SENSIBLE FANS RADIATED

Element	63Hz	125Hz	250Hz	500Hz	1KHz	2KHz	4KHz	8KHz	Comments
Sensible Fan - Dual	84	83	85	82	82	78	75	70	
Breakout - Cabinet Attenuation	-11	-15	-20	-31	-38	-40	-40	-40	Thermoshield Cabinet
Receiver	-24	-24	-24	-24	-24	-24	-24	-24	
Sum	49	44	41	27	20	14	11	6	
Target:									
Current: 35 dBA									
Notes:									

Sound data created by theoretical methods

SENSIBLE FAN AT FA INLET

Element	63Hz	125Hz	250Hz	500Hz	1KHz	2KHz	4KHz	8KHz	Comments
Sensible Fan - Dual	84	83	85	78	73	73	70	66	Inlet
4 Row Coil	0	-3	-3	-5	-6	-6	-8	-8	
4" Panel Filter	0	-1	-1	-2	-1	-3	-4	-4	
Receiver	-24	-24	-24	-24	-24	-24	-24	-24	
Sum	60	55	57	47	42	40	34	30	
Target:									
Current: 51 dBA	(NC 49 / RC 43)								
Notes:									

Sound data created by theoretical methods

Sound pressure calculated at a distance of 20 feet using a directivity factor (Q) of 2 assuming one reflective surface. The environment influences sound pressure, therefore dBA levels cannot be guaranteed.

COMPRESSORS RADIATED

Element	63Hz	125Hz	250Hz	500Hz	1KHz	2KHz	4KHz	8KHz	Comments
ZPDT36 Compressor 1	73	63	71	78	79	80	76	71	
ZPDT36 Compressor 2	73	63	71	78	79	80	76	71	
ZPDT36 Compressor 3	73	63	71	78	79	80	76	71	
ZPDT31 Compressor 1	68	57	62	76	76	79	73	69	
ZPDT31 Compressor 2	68	57	62	76	76	79	73	69	
ZPDT31 Compressor 3	68	57	62	76	76	79	73	69	
Breakout - Cabinet Attenuation	-11	-15	-20	-31	-38	-40	-40	-40	Thermoshield Cabinet
Receiver	-24	-24	-24	-24	-24	-24	-24	-24	
Sum	43	29	32	31	24	24	19	15	
Target:									
Current: 32 dBA									
Notes:									

Sound data created by theoretical methods

COMPRESSORS AT FA INLET

572	125Hz	250Hz	500Hz	1KHz	2KHz	4KHz	8KHz	Comments
73	63	71	78	79	80	76	71	
73	63	71	78	79	80	76	71	
73	63	71	78	79	80	76	71	
68	57	62	76	76	79	73	69	
68	57	62	76	76	79	73	69	
68	57	62	76	76	79	73	69	
-11	-14	-17	-23	-29	-35	-35	-35	Internal Walls
-24	-24	-24	-24	-24	-24	-24	-24	
43	30	35	39	33	29	24	20	
-	73 73 73 68 68 68 68 68 11 24 43	73 63 73 63 73 63 68 57 68 57 68 57 11 -14 24 -24 43 30	73 63 71 73 63 71 73 63 71 73 63 71 68 57 62 68 57 62 68 57 62 11 -14 -17 24 -24 -24 43 30 35	73 63 71 78 73 63 71 78 73 63 71 78 73 63 71 78 63 71 78 63 71 78 68 57 62 76 68 57 62 76 68 57 62 76 11 -14 -17 -23 24 -24 -24 -24 43 30 35 39	73 63 71 78 79 73 63 71 78 79 73 63 71 78 79 73 63 71 78 79 73 63 71 78 79 68 57 62 76 76 68 57 62 76 76 68 57 62 76 76 68 57 62 76 76 11 -14 -17 -23 -29 24 -24 -24 -24 -24 43 30 35 39 33	73 63 71 78 79 80 73 63 71 78 79 80 73 63 71 78 79 80 73 63 71 78 79 80 73 63 71 78 79 80 68 57 62 76 76 79 68 57 62 76 76 79 68 57 62 76 76 79 68 57 62 76 76 79 11 -14 -17 -23 -29 -35 24 -24 -24 -24 -24 -24 43 30 35 39 33 29	73 63 71 78 79 80 76 73 63 71 78 79 80 76 73 63 71 78 79 80 76 73 63 71 78 79 80 76 73 63 71 78 79 80 76 63 57 62 76 76 79 73 68 57 62 76 76 79 73 68 57 62 76 76 79 73 68 57 62 76 76 79 73 11 -14 -17 -23 -29 -35 -35 24 -24 -24 -24 -24 -24 -24 43 30 35 39 33 29 24	73 63 71 78 79 80 76 71 73 63 71 78 79 80 76 71 73 63 71 78 79 80 76 71 73 63 71 78 79 80 76 71 73 63 71 78 79 80 76 71 63 71 78 79 80 76 71 68 57 62 76 76 79 73 69 68 57 62 76 76 79 73 69 68 57 62 76 76 79 73 69 11 -14 -17 -23 -29 -35 -35 -35 24 -24 -24 -24 -24 -24 -24 -24 43 30 35 39 33 29 24 20

Notes:

Sound data created by theoretical methods

Sound pressure calculated at a distance of 20 feet using a directivity factor (Q) of 2 assuming one reflective surface. The environment influences sound pressure, therefore dBA levels cannot be guaranteed.

Path 63Hz 125Hz 250Hz 500Hz 1KHz 2KHz 4KHz 8KHz **Condenser Fans** Latent Fans Radiated Latent Fans at FA inlet Sensible Fans Radiated Sensible Fan at FA inlet **Compressors Radiated** Compressors at FA Inlet Sum Current: 61 dBA

SINGLE UNIT SUMMATION

Notes:

Sound data created by theoretical methods

AIR FLOW DATA

SYSTEM SIZE	36K	48K	58K
Outdoor (CFM)	2,130	4,500	4,415

SOUND PRESSURE

SYSTEM SIZE	36K	48K	58K	
Outdoor sound pressure level	dBa	63	62.5	64

SOUND PRESSURE IN OCTAVE BANDS

SIZE	Frequency (Hz)	63	125	250	500	1000	2000	4000	8000
261	Cooling dB(A)	51.3	59.2	56.3	51.3	49.4	46.8	42.6	35.7
301	Heating dB(A)	53.8	62.3	60.8	53.7	52.0	48.4	45.8	37.8
101	Cooling dB(A)	59.2	61.6	55.9	58.1	59.6	51.9	47.8	43.8
485	Heating dB(A)	65.1	66.1	61.3	59.7	58.2	54.1	47.5	43.6
FOR	Cooling dB(A)	22.9	41.3	46.6	50.1	50.8	52.6	46.0	40.4
JON	Heating dB(A)	30.0	46.8	48.4	52.0	54.3	52.8	43.7	41.3

OUTDOOR UNIT SOUND PRESSURE TEST CONDITIONS

3.3 ft. (1m)

NOTE: H=0.5 x Height of outdoor unit

	INDOOR C	ONDITION	OUTDOOR CONDITION				
	DB	WB	DB	WB			
Cooling	80.6F (27C)	66.2F (19C)	95F (35C)	75.2F (24C)			
Heating	68F (20C)	59F (15C)	44.6F (7C)	42.8F (6C)			

Outdoor Unit

APPENDIX B MODELING RESULTS

Receptor	63	125	250	500	1000	2000	4000	8000	dBA
R01	26	24	25	<20	20	<20	<20	<20	23
R02	32	31	32	25	23	<20	<20	<20	28
R03	34	34	33	28	25	22	<20	<20	31
R04	36	39	36	33	29	24	<20	<20	34
R05	36	41	38	35	32	27	20	<20	37
R06	39	44	41	40	37	30	21	<20	41
R07	40	44	41	39	37	30	20	<20	41
PL01	51	58	53	51	49	43	38	30	54
PL02	51	55	50	49	46	41	35	27	51
PL03	42	42	41	36	34	34	28	<20	40
PL04	47	46	48	45	43	42	36	22	48
PL05	49	48	52	46	44	43	37	24	50
PL06	42	39	43	39	37	36	29	<20	43
PL07	36	35	35	30	35	30	22	<20	38
PL08	40	43	38	36	38	31	22	<20	41
PL09	44	50	44	43	42	35	27	<20	46
PL10	45	51	46	45	43	37	30	<20	47
PL11	48	55	51	49	48	42	36	24	52
PL12	49	56	52	51	49	43	37	27	53
PL13	49	55	50	49	47	41	35	25	51
PL14	55	62	57	56	54	48	43	36	58
Medway Noise Ordinance	67	55	48	42	38	35	32	28	-

TABLE IV. Estimated nighttime octave-band sound levels without mitigation (dB re: 20 µPa)

Recentor	63	125	250	500	1000	2000	4000	8000	dBA
R01	26	20	200	12	15	10	-6	-54	20
R01	20	22	25	10	10	10	-0	-34 25	20
R02	32	30	30	23	20	15	4	-25	26
RU3	34	32	33	27	24	21	11	-16	30
R04	36	33	31	27	26	22	12	-12	31
R05	34	37	33	29	25	20	10	-12	31
R06	35	39	34	32	27	19	8	-16	33
R07	34	39	34	32	26	18	7	-19	32
PL01	45	51	45	42	37	29	23	13	43
PL02	45	46	41	39	35	29	23	13	40
PL03	42	39	39	35	32	29	21	3	38
PL04	47	44	45	39	37	35	28	13	43
PL05	49	45	47	40	37	35	29	15	44
PL06	42	38	39	35	32	29	20	7	38
PL07	37	32	32	29	26	22	13	-5	31
PL08	34	34	29	25	24	19	10	-2	28
PL09	36	40	36	31	26	20	11	-5	33
PL10	37	40	37	32	27	21	12	-2	34
PL11	40	45	40	36	31	24	17	5	38
PL12	42	47	42	38	32	25	18	7	39
PL13	41	46	41	37	31	24	18	6	38
PL14	48	52	47	43	38	31	26	17	45
Medway Noise Ordinance	67	55	48	42	38	35	32	28	-

TABLE V. Estimated nighttime octave-band sound levels with mitigation (dB re: 20 µPa)

